数学猜想-数学猜想难题排行
2020-01-20 06:44作者:堆糖网 486人阅读
简介一、数学猜想难题排行 一庞加莱猜想任何一个封闭的三维空间,只要它里面所有的封闭曲线都可以收缩成一点,这个空间就一定是一个三维圆球 六大世纪难题仍然待解 二NP完全问题 如
一、数学猜想难题排行
一庞加莱猜想任何一个封闭的三维空间,只要它里面所有的封闭曲线都可以收缩成一点,这个空间就一定是一个三维圆球 六大世纪难题仍然待解 二NP完全问题 如果某人告诉你,数可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为乘上,那么你就可以用一个袖珍计算器验证这是对的。很快用内部结构来验证一个答案,还是花费大量的时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文考克于年陈述的。 三霍奇猜想 霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的有理线性组合。 四黎曼假设 著名的黎曼假设断言,方程zs0的所有有意义的解都在一条直线上。这点已经对于开始的个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。 五杨-米尔斯理论 大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。“质量缺口”假设,从来没有得到一个数学上令人满意的证实。 六纳维叶-斯托克斯方程 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可通过理解纳维叶-斯托克斯方程的解,来对其进行解释和预言。 七贝赫和斯维讷通-戴尔猜想 当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数zs在点s1附近的性态。特别是,这个有趣的猜想认为,如果z1等于0那么存在无限多个有理点解,相反,如果z1不等于0那么只存在有限多个这样的点。
|
| 以上数据内容来源于:百度数学猜想难题排行、搜狗数学猜想难题排行、360数学猜想难题排行 |
二、三大数学难题
1、费马大定理 2、四色问题 3、哥德巴赫猜想 世界近代三大数学难题之一四色猜想 四色猜想的提出来自英国。年,毕业于伦敦大学的弗南西斯格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到年哈密尔顿逝世为止,问题也没有能够解决。 年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。~年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 11年后,即年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于年证明了22国以下的地图都可以用四色着色。年,有人从22国推进到35国。年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。 电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。 不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。 世界近代三大数学难题之一费马最后定理 被公认执世界报纸牛耳地位地位的纽约时报於年6月24日在其一版头题刊登了一则有 关数学难题得以解决的消息,那则消息的标题是「在陈年数学困局中,终於有人呼叫『 我找到了』」。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的 男人照片。这个古意盎然的男人,就是法国的数学家费马(费马 小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极 大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子 」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的 数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内 容是有关一个方程式x2y2z2的正整数解的问题,当n2时就是我们所熟知的毕氏定 理(中国古代又称勾股弦定理):x2y2z2,此处z表一直角形之斜边而x、y为其之 两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有 整数解(其实有很多),例如:x3、y4、z5;x6、y8、z10;x5、y12、z13… 等等。 费马声称当ngt2时,就找不到满足的整数解,例如:方程式x3y3z3就无法 找到整数解。 当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙 法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百 多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最 后定理也就成了数学界的心头大患,极欲解之而后快。 十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和 三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫 斯克尔在年提供十万马克,给能够证明费马最后定理是正确的人, 有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然 如此仍然吸引不少的「数学痴」。 二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的 ,年电脑专家斯洛文斯基借助电脑运行秒证明当n为时费马定理是正确 的(注为一天文数字,大约为位数)。 虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解 决了,这个数学难题是由英国的数学家威利斯所解决。其实威利斯是 利用二十世纪过去三十年来抽象数学发展的结果加以证明。 五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志 村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八0年代德 国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联 论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论 由威利斯在年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报 告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的。不过威利斯的 证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以 修正。年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。年6 月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金 ,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。 要证明费马最后定理是正确的 (即对n33均无正整数解) 只需证x4y4z4和为奇质数,都没有整数解。 世界近代三大数学难题之一哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于年,年当选为俄国彼得堡科学院院士。年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数只能被和它本身整除的数之和。如6=3+3,12=5+7等等。年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。 叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,然而不能作出证明。欧拉一直到死也没有对此作出证明。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。 到了20世纪20年代,才有人开始向它靠近。年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为99。这种缩小包围圈的办法很管用,科学家们于是从9十9开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 年,数学家拉德马哈尔证明了7+7;年,数学家爱斯尔曼证明了6+6;年,数学家布赫斯塔勃证明了5十5,年,他又证明了4+4;年,数学家维诺格拉多夫证明了3+3;年,我国数学家王元证明了2十3。随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了l十2。至此,哥德巴赫猜想只剩下最后一步1+1了。 陈景润的论文于年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想1+1的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰。
|
| 以上数据内容来源于:百度三大数学难题、搜狗三大数学难题、360三大数学难题 |
三、数学猜想对数学发展的作用
解析: 举个例子吧。 1数学家黎曼提出了“黎曼猜想”。 2为了证明一些猜想,无数数学家前赴后继,耗尽一生心血,却无果。 3但是,为了证明这个猜想,科学家们提出了许多新的数学理论,这大大促进了数学的发展。 这些东西的实际用途确实没啥! 像pi在实际用途中取道小数点后28位时计算太阳系的周长都能精确到原子数量级数学冰雹简直可以说是和一个简单游戏差不多 但是如果他们被证明了,数学确实是会迈进一大步, 像“哥德巴赫猜想”,在证明他的过程中数学家发现了很多新的工具新的方法,这些方法为数学的发展起到了很大的促进作用 有人说:“哥德巴赫猜想犹如一只会生金蛋的鸭子可以孵化一种新的思想方法”,就是这个意思了! 其他看起来没什么实际用途的世界难题,都用这方面的作用! 关于圆周率pi,计算它也是有很重大的意义的! 在计算机发明之前,计算圆周率是一项算法和智力的竞赛,数学家们在那个时期发明了很多计算圆周率的公式以及许多计算级数的方法! 计算机发明后,计算圆周率不光是一项算法和智力的竞赛,而且还是检验计算机性能的一种有效方式,比如现时比较流行的,还有最近新出的都是检验计算机cpu性能的有效软件
|
| 以上数据内容来源于:百度数学猜想对数学发展的作用、搜狗数学猜想对数学发展的作用、360数学猜想对数学发展的作用 |
| 更多关于数学猜想 |
|---|
| 更多相关:百度数学猜想、搜狗数学猜想、360数学猜想 |
Tags:江西科技厅
相关文章
堆糖随机推荐
科技传播系统揭秘:科技传播期刊是否“给钱就发”?
本文揭示了科技传播期刊背后的运作机制,探讨了"给钱就发"现象的真实性,旨在提醒广大科研工作者在投稿时保持警惕,维护科技传播的公正与质量。一、科技传播系统1、科技传播系统:携手共创未来在信息爆炸的时代,
我是世界上最幸福的人:体悟幸福生活的点滴之美作文
这篇作文以"我是世界上最幸福的人"为主题,通过细腻的文字描绘生活中的点滴美好,引导读者体悟幸福生活的真谛。作者通过自己的亲身经历和感悟,让我们明白幸福其实就在身边,只要用心去感受和珍惜,每个人都可以成
世界第一校长领衔:别人家的小猫咪成教育奇迹,引领校园全新革命!
世界第一校长领衔,展示别人家的小猫咪如何成为教育奇迹,引领校园全新革命!这只萌翻众生的小猫,带来前所未有的教育模式,助力学子飞跃巅峰。一、世界第一校长1、世界第一校长:引领教育之光在全球范围内,有很多
穿越时空:随身携带史前科技探秘,搬救兵求罚还原真实原始生活
穿越时空,携带史前科技探秘,揭开原始生活神秘面纱。搬救兵求罚,探寻真实原始生活,体验远古文明的瑰丽与艰辛,让历史重现眼前。一、随身携带史前科技1、随身携带史前科技:一种新的生活方式在我们这个科技高度发
免费北斗导航最新版下载,轻松掌握世界地图桌面,带您走遍天涯海角!
免费北斗导航最新版下载,让您轻松掌握世界地图桌面!无论天涯海角,我们都能为您指引方向。快来体验这款强大的导航神器,让旅行变得更加轻松愉快!一、世界地图桌面1、世界地图桌面:旅行者的最佳伴侣在这个充满探
扬州扬杰电子科技股份和扬州扬杰科技详解
扬州扬杰电子科技股份是一家专注于电子产品研发、生产和销售的高新技术企业,扬州扬杰科技详解则是对该公司各项技术、产品及发展战略的深入剖析,帮助人们更好地了解和认识这家具有创新精神和实力的电子科技公司。一
“垂钓者挑战极限,玩坏世界寻找鱼获奇观:全球最震撼22大地标”
"勇敢的垂钓者挑战极限,环游世界寻找最壮观的鱼获奇观,探索全球22大地标,揭开令人震撼的神秘面纱。"一、玩坏世界的垂钓者1、玩坏世界的垂钓者在这个繁华喧嚣的世界里,有一群特殊的人,他们游走在现实与虚幻
震惊!世界最胖的人3600斤,照片曝光,肉山惊现,挑战人类极限!
震撼揭秘!全球最重人破3600斤,照片曝光,惊现巨型肉山!挑战人类极限,令人咋舌!一、世界最胖的人1、世界最胖的人:一位生活的勇士在这个追求健康、美丽和完美的时代,有一位特殊的人让我们感叹不已,他就是

